Biosynthesis: Terrifically tailored peptides

January 19th, 2017 by Caitlin Deane

Nature Chemical Biology 13, 129 (2017). doi:10.1038/nchembio.2292

Author: Caitlin Deane

Host-Pathogen interactions: Nucleotide circles of life and death

January 19th, 2017 by Lingyin Li

Nature Chemical Biology 13, 130 (2017). doi:10.1038/nchembio.2289

Author: Lingyin Li

A phosphodiesterase, CdnP, from Mycobacterium tuberculosis (M. tb.) helps the pathogen evade immune detection by degrading the second messenger cyclic di-AMP that alerts the host to its presence. Genetic knockout of CdnP dampens the virulence of the pathogen, suggesting that CdnP inhibitors are potential anti–M. tb. therapeutics.

Pancreatic development: Changing identity

January 19th, 2017 by Grant Miura

Nature Chemical Biology 13, 129 (2017). doi:10.1038/nchembio.2293

Author: Grant Miura

Target engagement: Shining a light

January 19th, 2017 by Kilian V M Huber

Nature Chemical Biology 13, 133 (2017). doi:10.1038/nchembio.2295

Author: Kilian V M Huber

The ability to measure the binding of a compound to its intended target in live cells or tissue is a critical parameter for drug discovery. A new method using polarized light microscopy adds to the current toolbox by enabling monitoring of target engagement in vitro and in vivo at single-cell resolution.

RNA structure: Untying Zika’s knots

January 19th, 2017 by Terry L. Sheppard

Nature Chemical Biology 13, 129 (2017). doi:10.1038/nchembio.2294

Author: Terry L. Sheppard

The pharmacological regulation of cellular mitophagy

January 19th, 2017 by Nikolaos D Georgakopoulos

Nature Chemical Biology 13, 136 (2017). doi:10.1038/nchembio.2287

Authors: Nikolaos D Georgakopoulos, Geoff Wells & Michelangelo Campanella

Synthetic biology: Sensing with modular receptors

January 19th, 2017 by Matthew Brenner

Nature Chemical Biology 13, 131 (2017). doi:10.1038/nchembio.2290

Authors: Matthew Brenner, Jang Hwan Cho & Wilson W Wong

Sensing and responding to diverse extracellular signals is a crucial aspect of cellular decision-making that is currently lacking in the synthetic biology toolkit. The development of modular receptor platforms allows for the rewiring of cellular input–output relationships.

Super-resolution visualization of caveolae deformation in response to osmotic stress [Signal Transduction]

January 17th, 2017 by Lu Yang, Suzanne Scarlata

Caveolae are protein dense plasma membrane domains structurally composed of caveolin -1 or -3 along with other proteins. Our previous studies have shown that caveolae enhance calcium signals generated through the Gαq/phospholipase Cβ signaling pathway, and that subjecting cells to hypo-osmotic stress reverses this enhancement. In this study, we have used super-resolution fluorescence microscopy supplemented by fluorescence correlation studies to determine the structural factors that underlie this behavior. We find similar and significant populations of Gαq and one of its receptors, bradykinin type 2 receptor (β2R), as well as Gαi and its coupled 2-adrenergic receptor (βAR), localize to caveolae domains. While mild osmotic stress deforms caveolae altering interactions between caveolae and these proteins, it does not affect the general structure and the localization of caveolae components remain largely unchanged. Additionally, in contrast to calcium signals mediated through Gαq-B2R, osmotic stress does not affect cAMP signals mediated through Gαi and βAR. Structurally, we find that mild osmotic stress corresponding roughly to a pressure of 3.82 N/m2 increases the domain diameter by ~30% and increases the fluorescence intensity in the center of the domain mouth suggesting a flattening of the invagination. Approximate calculations show that caveolae in muscle tissue have the strength to handle the stress of muscle movement.

Designed cell consortia as fragrance-programmable analog-to-digital converters

January 16th, 2017 by Marius Müller

Nature Chemical Biology 13, 309 (2017). doi:10.1038/nchembio.2281

Authors: Marius Müller, Simon Ausländer, Andrea Spinnler, David Ausländer, Julian Sikorski, Marc Folcher & Martin Fussenegger

  • Posted in Nat Chem Biol, Publications
  • Comments Off on Designed cell consortia as fragrance-programmable analog-to-digital converters

Recurrent RNA motifs as scaffolds for genetically encodable small-molecule biosensors

January 16th, 2017 by Ely B Porter

Nature Chemical Biology 13, 295 (2017). doi:10.1038/nchembio.2278

Authors: Ely B Porter, Jacob T Polaski, Makenna M Morck & Robert T Batey

  • Posted in Nat Chem Biol, Publications
  • Comments Off on Recurrent RNA motifs as scaffolds for genetically encodable small-molecule biosensors