Ligand-promoted protein folding by biased kinetic partitioning

February 20th, 2017 by Karan S Hingorani

Nature Chemical Biology 13, 369 (2017). doi:10.1038/nchembio.2303

Authors: Karan S Hingorani, Matthew C Metcalf, Derrick T Deming, Scott C Garman, Evan T Powers & Lila M Gierasch

Protein folding in cells occurs in the presence of high concentrations of endogenous binding partners, and exogenous binding partners have been exploited as pharmacological chaperones. A combined mathematical modeling and experimental approach shows that a ligand improves the folding of a destabilized protein by biasing the kinetic partitioning between folding and alternative fates (aggregation or degradation). Computationally predicted inhibition of test protein aggregation and degradation as a function of ligand concentration are validated by experiments in two disparate cellular systems.

Accelerating the semisynthesis of alkaloid-based drugs through metabolic engineering

February 15th, 2017 by Amy M Ehrenworth

Nature Chemical Biology 13, 249 (2017). doi:10.1038/nchembio.2308

Authors: Amy M Ehrenworth & Pamela Peralta-Yahya

  • Posted in Nat Chem Biol, Publications
  • Comments Off on Accelerating the semisynthesis of alkaloid-based drugs through metabolic engineering

mRNA localization: If you have to ASH

February 15th, 2017 by Joshua M. Finkelstein

Nature Chemical Biology 13, 243 (2017). doi:10.1038/nchembio.2323

Author: Joshua M. Finkelstein

Synthetic biology: Synthetic gene networks that smell

February 15th, 2017 by Fahim Farzadfard

Nature Chemical Biology 13, 245 (2017). doi:10.1038/nchembio.2315

Authors: Fahim Farzadfard & Timothy K Lu

Bioengineers have endowed a consortium of human cells with an artificial sense of smell, enabling the cells to detect, quantify, and remember the presence of gaseous volatile compounds in their environment.

Enzyme mechanisms: Fickle about fluorine

February 15th, 2017 by Caitlin Deane

Nature Chemical Biology 13, 243 (2017). doi:10.1038/nchembio.2324

Author: Caitlin Deane

Plant infection: A decoy tactic

February 15th, 2017 by Grant Miura

Nature Chemical Biology 13, 243 (2017). doi:10.1038/nchembio.2322

Author: Grant Miura

Metabolism: A-way with biofilms

February 15th, 2017 by Mirella Bucci

Nature Chemical Biology 13, 243 (2017). doi:10.1038/nchembio.2325

Author: Mirella Bucci

G-Protein-coupled receptors: Decoding mixed signals

February 15th, 2017 by Thomas J Gardella

Nature Chemical Biology 13, 247 (2017). doi:10.1038/nchembio.2316

Author: Thomas J Gardella

A new mechanism of functional crosstalk between two distinct G-protein-coupled receptors (GPCRs)—the parathyroid hormone receptor (PTHR) and β2-adrenergic receptor (β2 Ar)—that occurs at the level of G protein βγ subunits and a specific adenylyl cyclase isoform is identified. This crosstalk augments cAMP signaling by the PTHR from endosomes, and thus promotes the actions of PTH ligands in bone target cells.

The GlcN6P cofactor plays multiple catalytic roles in the glmS ribozyme

February 13th, 2017 by Jamie L Bingaman

Nature Chemical Biology 13, 439 (2017). doi:10.1038/nchembio.2300

Authors: Jamie L Bingaman, Sixue Zhang, David R Stevens, Neela H Yennawar, Sharon Hammes-Schiffer & Philip C Bevilacqua

  • Posted in Nat Chem Biol, Publications
  • Comments Off on The GlcN6P cofactor plays multiple catalytic roles in the glmS ribozyme

Selective in vivo metabolic cell-labeling-mediated cancer targeting

February 13th, 2017 by Hua Wang

Nature Chemical Biology 13, 415 (2017). doi:10.1038/nchembio.2297

Authors: Hua Wang, Ruibo Wang, Kaimin Cai, Hua He, Yang Liu, Jonathan Yen, Zhiyu Wang, Ming Xu, Yiwen Sun, Xin Zhou, Qian Yin, Li Tang, Iwona T Dobrucki, Lawrence W Dobrucki, Eric J Chaney, Stephen A Boppart, Timothy M Fan, Stéphane Lezmi, Xuesi Chen, Lichen Yin & Jianjun Cheng