Mechanistic basis for the evolution of chalcone synthase catalytic cysteine reactivity in land plants [Plant Biology]

October 5th, 2018 by Geoffrey Liou, Ying-Chih Chiang, Yi Wang, Jing-Ke Weng

Flavonoids are important polyphenolic natural products, ubiquitous in land plants, that play diverse functions in plants’ survival in their ecological niches, including UV protection, pigmentation for attracting pollinators, symbiotic nitrogen fixation, and defense against herbivores. Chalcone synthase (CHS) catalyzes the first committed step in plant flavonoid biosynthesis and is highly conserved in all land plants. In several previously reported crystal structures of CHSs from flowering plants, the catalytic cysteine is oxidized to sulfinic acid, indicating enhanced nucleophilicity in this residue associated with its increased susceptibility to oxidation. In this study, we report a set of new crystal structures of CHSs representing all five major lineages of land plants (bryophytes, lycophytes, monilophytes, gymnosperms, and angiosperms), spanning 500 million years of evolution. We reveal that the structures of CHS from a lycophyte and a moss species preserve the catalytic cysteine in a reduced state, in contrast to the cysteine sulfinic acid seen in all euphyllophyte CHS structures. In vivo complementation, in vitro biochemical and mutagenesis analyses, and molecular dynamics simulations identified a set of residues that differ between basal-plant and euphyllophyte CHSs and modulate catalytic cysteine reactivity. We propose that the CHS active-site environment has evolved in euphyllophytes to further enhance the nucleophilicity of the catalytic cysteine since the divergence of euphyllophytes from other vascular plant lineages 400 million years ago. These changes in CHS could have contributed to the diversification of flavonoid biosynthesis in euphyllophytes, which in turn contributed to their dominance in terrestrial ecosystems.

RNF144A Sustains EGFR Signaling to Promote EGF-Dependent Cell Proliferation [Protein Synthesis and Degradation]

August 31st, 2018 by Shiuh-Rong Ho, Weei-Chin Lin

RNF144A is a single-pass transmembrane RBR E3 ligase that interacts with and degrades cytoplasmic DNA-PKcs, which is an EGFR-interacting partner. Interestingly, RNF144A expression is positively correlated with EGFR mRNA and protein levels in several types of cancer. However, the relationship between RNF144A and EGFR is poorly understood. This study reports an unexpected role for RNF144A in the regulation of EGF/EGFR signaling and EGF-dependent cell proliferation. EGFR ligands, but not DNA-damaging agents, induce a DNA-PKcs-independent interaction between RNF144A and EGFR. RNF144A promotes EGFR ubiquitination, maintains EGFR protein and prolongs EGF/EGFR signaling during EGF stimulation. Moreover, depletion of RNF144A by multiple independent approaches results in a decrease in EGFR expression and EGF/EGFR signaling. RNF144A knockout cells also fail to mount an immediate response to EGF for activation of G1/S progression genes. Consequently, depletion of RNF144A reduces EGF-dependent cell proliferation. These defects may be at least in part due to a role for RNF144A in regulating EGFR transport in the intracellular vesicles during EGF treatment.

Identification of a Kdn biosynthesis pathway in the haptophyte Prymnesium parvum suggests widespread sialic acid biosynthesis among microalgae [Enzymology]

August 31st, 2018 by Ben A Wagstaff, Martin Rejzek, Robert A. Field

Sialic acids are a family of more than 50 structurally distinct acidic sugars on the surface of all vertebrate cells where they terminate glycan chains and are exposed to many interactions with the surrounding environment. In particular, sialic acids play important roles in cell-cell and host-pathogen interactions. The sialic acids or related nonulosonic acids have been observed in Deuterostome lineages, Eubacteria, and Archaea, but are notably absent from plants. However, the structurally related C8 acidic sugar, 3-deoxy-D-manno-2-octulosonic acid (Kdo), is present in Gram-negative bacteria and plants as a component of bacterial lipopolysaccharide and pectic rhamnogalacturonan-II in the plant cell wall. Until recently, sialic acids were not thought to occur in algae, but as in plants, Kdo has been observed in algae. Here, we report the de novo biosynthesis of the deaminated sialic acid, 3-deoxy-D-glycero-D-galacto-2-nonulosonic acid (Kdn), in the toxin-producing microalga Prymnesium parvum. Using biochemical methods, we show that this alga contains CMP–Kdn and identified and recombinantly expressed the P. parvum genes encoding Kdn-9-P synthetase and CMP-Kdn synthetase enzymes that convert mannose-6-P to CMP–Kdn. Bioinformatics analysis revealed sequences related to those of the two P. parvum enzymes, suggesting that sialic acid biosynthesis is likely more widespread among microalgae than previously thought and that this acidic sugar may play a role in host-pathogen interactions involving microalgae. Our findings provide evidence that P. parvum has the biosynthetic machinery for de novo production of the deaminated sialic acid Kdn and that sialic acid biosynthesis may be common among microalgae.
  • Posted in Journal of Biological Chemistry, Publications
  • Comments Off on Identification of a Kdn biosynthesis pathway in the haptophyte Prymnesium parvum suggests widespread sialic acid biosynthesis among microalgae [Enzymology]

Are N- and C-terminally Truncated A{beta} species key pathological triggers in Alzheimer’s disease? [Neurobiology]

August 24th, 2018 by Julie Dunys, Audrey Valverde, Frederic Checler

The histopathology of Alzheimer’s disease (AD) is characterized by neuronal loss, neurofibrillary tangles, and senile plaque formation. The latter results from an exacerbated production (familial AD cases) or altered degradation (sporadic cases) of 40/42 amino-acid-long β-amyloid peptides (Aβ peptides) that are produced by sequential cleavages of Aβ precursor protein (βAPP) by β- and γ-secretases. The amyloid cascade hypothesis proposes a key role for the full-length Aβ42 and the Aβ40/42 ratio in AD etiology, in which soluble Aβ oligomers lead to neurotoxicity, tau hyperphosphorylation, aggregation, and, ultimately, cognitive defects. However, following this postulate, during the last decade, several clinical approaches aimed at decreasing full-length Aβ42 production or neutralizing it by immunotherapy have failed to reduce or even stabilize AD-related decline. Thus, the Aβ peptide (Aβ40/42)-centric hypothesis is probably a simplified view of a much more complex situation involving a multiplicity of APP fragments and Aβ catabolites. Indeed, biochemical analyses of AD brain deposits and fluids have unraveled an Aβ peptidome consisting of additional Aβ-related species. Such Aβ catabolites could be due to either primary enzymatic cleavages of βAPP or secondary processing of Aβ itself by exopeptidases. Here, we review the diversity of N- and C-terminally truncated Aβ peptides and their biosynthesis and outline their potential function/toxicity. We also highlight their potential as new pharmaceutical targets and biomarkers.

p25 of the dynactin complex plays a dual role in cargo binding and dynactin regulation [Cell Biology]

August 24th, 2018 by Rongde Qiu, Jun Zhang, Xin Xiang

Cytoplasmic dynein binds its cargoes via the dynactin complex and cargo adapters, and the dynactin pointed-end protein p25 is required for dynein-dynactin binding to the early endosomal dynein adapter HookA (Hook in the fungus Aspergillus nidulans). However, it is unclear whether the HookA-dynein-dynactin interaction requires p27, another pointed-end protein forming heterodimers with p25 within vertebrate dynactin. Here, live-cell imaging and biochemical pull-down experiments revealed that although p27 is a component of the dynactin complex in A. nidulans, it is dispensable for dynein-dynactin to interact with ΔC-HookA (cytosolic HookA lacking its early endosome-binding C terminus) and not critical for dynein-mediated early endosome transport. Using mutagenesis, imaging, and biochemical approaches, we found that several p25 regions are required for the ΔC-HookA-dynein-dynactin interaction, with the N terminus and Loop1 being the most critical regions. Interestingly, p25 was also important for the microtubule (MT) plus-end accumulation of dynactin. This p25 function in dynactin localization also involved p25’s N terminus and Loop1 critical for the ΔC-HookA-dynein-dynactin interaction. Given that dynactin’s MT plus-end localization does not require HookA and that the kinesin-1-dependent plus-end accumulation of dynactin is unnecessary for the ΔC-HookA-dynein-dynactin interaction, our results indicate that p25 plays a dual role in cargo binding and dynactin regulation. As cargo adapters are implicated in dynein activation via binding to dynactin’s pointed end to switch the conformation of p150, a major dynactin component, our results suggest p25 as a critical pointed-end protein involved in this process.

Thioridazine inhibits self-renewal in breast cancer cells via DRD2-dependent STAT3 inhibition, but induces a G1 arrest independent of DRD2 [Signal Transduction]

August 21st, 2018 by Matthew Tegowski, Cheng Fan, Albert S. Baldwin

Thioridazine is an antipsychotic that has been shown to induce cell death and inhibit self-renewal in a broad spectrum of cancer cells. The mechanisms by which these effects are mediated are currently unknown but are presumed to result from the inhibition of dopamine receptor 2 (DRD2). Here we show that the self-renewal of several, but not all, triple-negative breast cancer cell lines is inhibited by thioridazine. The inhibition of self-renewal by thioridazine in these cells is mediated by DRD2 inhibition. Further, we demonstrate that DRD2 promotes self-renewal in these cells via a STAT3 and IL-6-dependent mechanism. We also show that thioridazine induces a G1 arrest and a loss in cell viability in all tested cell lines. However, the reduction in proliferation and cell viability is independent of DRD2 and STAT3. Our results indicate that while there are cell types in which DRD2 inhibition results in inhibition of STAT3 and self-renewal, the dramatic block in cancer cell proliferation across many cell lines caused by thioridazine treatment is independent of DRD2 inhibition.
  • Posted in Journal of Biological Chemistry, Publications
  • Comments Off on Thioridazine inhibits self-renewal in breast cancer cells via DRD2-dependent STAT3 inhibition, but induces a G1 arrest independent of DRD2 [Signal Transduction]

Poxviral protein E3-altered cytokine production reveals that DExD/H-box helicase 9 controls Toll-like receptor-stimulated immune responses [Signal Transduction]

August 15th, 2018 by Alan Dempsey, Sinead E. Keating, Michael Carty, Andrew G. Bowie

Host pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs) detect viruses and other pathogens, inducing production of cytokines that cause inflammation and mobilize cells to control infection. Vaccinia virus (VACV) encodes proteins that antagonize these host innate immune responses, and elucidating the mechanisms of action of these viral proteins helped shed light on PRR signalling mechanisms. The VACV virulence factor E3 is one of the most intensely studied VACV proteins and has multiple effects on host cells, many of which cannot be explained by the currently known cellular targets of E3. Here, we report that E3 expression in human monocytes alters TLR2- and TLR8-dependent cytokine induction, and particularly inhibits IL-6. Using MS, we identified DExD/H-box helicase 9 (DHX9) as an E3 target. Although DHX9 has previously been implicated as a PRR for sensing nucleic acid in dendritic cells, we found no role for DHX9 as a nucleic acid-sensing PRR in monocytes. Rather, DHX9 suppression in these cells phenocopied the effects of E3 expression on TLR2- and TLR8-dependent cytokine induction, in that DHX9 was required for all TLR8-dependent cytokines measured, and for TLR2-dependent IL-6. Further, DHX9 also had a cell- and stimulus-independent role in IL-6 promoter induction. DHX9 enhanced nuclear factor kappa B (NFkB)-dependent IL-6 promoter activation, which was directly antagonized by E3. These results indicate new roles for DHX9 in regulating cytokines in innate immunity and reveal that VACV E3 disrupts innate immune responses by targeting of DHX9.
  • Posted in Journal of Biological Chemistry, Publications
  • Comments Off on Poxviral protein E3-altered cytokine production reveals that DExD/H-box helicase 9 controls Toll-like receptor-stimulated immune responses [Signal Transduction]

The Saccharomyces cerevisiae Hrq1 and Pif1 DNA helicases synergistically modulate telomerase activity in vitro [Enzymology]

August 1st, 2018 by David G. Nickens, Cody M. Rogers, Matthew L. Bochman

Telomere length homeostasis is vital to maintaining genomic stability and is regulated by multiple factors, including telomerase activity and DNA helicases. The Saccharomyces cerevisiae Pif1 helicase was the first discovered catalytic inhibitor of telomerase, but recent experimental evidence suggests that Hrq1, the yeast homolog of the disease-linked human RecQ-like helicase 4 (RECQL4), plays a similar role via an undefined mechanism. Using yeast extracts enriched for telomerase activity and an in vitro primer extension assay, here we determined the effects of recombinant wild-type and inactive Hrq1 and Pif1 on total telomerase activity and telomerase processivity. We found that titrations of these helicases alone have equal-but-opposite biphasic effects on telomerase, with Hrq1 stimulating activity at high concentrations. When the helicases were combined in reactions, however, they synergistically inhibited or stimulated telomerase activity depending on which helicase was catalytically active. These results suggest that Hrq1 and Pif1 interact and that their concerted activities ensure proper telomere length homeostasis in vivo. We propose a model in which Hrq1 and Pif1 cooperatively contribute to telomere length homeostasis in yeast.

The molecular language of membraneless organelles [Cell Biology]

July 25th, 2018 by Edward Gomes, James Shorter

Eukaryotic cells organize their intracellular components into organelles that can be membrane-bound or membraneless. A large number of membraneless organelles, including nucleoli, Cajal bodies, P-bodies, and stress granules, exist as liquid droplets within the cell and arise from the condensation of cellular material in a process termed liquid-liquid phase separation (LLPS). Beyond a mere organizational tool, concentrating cellular components into membraneless organelles tunes biochemical reactions and improves cellular fitness during stress. In this review, we provide an overview of the molecular underpinnings of the formation and regulation of these membraneless organelles. This molecular understanding explains emergent properties of these membraneless organelles and shines new light on neurodegenerative diseases, which may originate from disturbances in LLPS and membraneless organelles.

The RNA-binding complex ESCRT-II in Xenopus laevis eggs recognizes purine-rich sequences through its subunit Vps25 [Cell Biology]

June 14th, 2018 by Amy B Emerman, Michael Blower

RNA-binding proteins (RBPs) are critical regulators of gene expression. Recent studies have uncovered hundreds of mRNA-binding proteins that do not contain annotated RNA-binding domains and have well-established roles in other cellular processes. Investigation of these nonconventional RBPs is critical for revealing novel RNA-binding domains and may disclose connections between RNA regulation and other aspects of cell biology. Endosomal sorting complex required for transport II (ESCRT-II) is a nonconventional RNA-binding complex that has a canonical role in multivesicular body formation. ESCRT-II previously has been identified as an RNA-binding complex in Drosophila oocytes, but whether its RNA-binding properties extend beyond Drosophila is unknown. In this study, we found that the RNA-binding properties of ESCRT-II are conserved in Xenopus eggs, where ESCRT-II interacted with hundreds of mRNAs. Using a UV-crosslinking approach, we demonstrated that ESCRT-II binds directly to RNA through its subunit Vps25. UV-crosslinking and immunoprecipitation (CLIP)-Seq revealed that Vps25 specifically recognizes a polypurine (i.e. GA-rich) motif in RNA. Using purified components, we could reconstitute the selective Vps25-mediated binding of the polypurine motif in vitro. Our results provide insight into the mechanism by which ESCRT-II selectively binds to mRNAs and also suggest an unexpected link between endosome biology and RNA regulation.