Structure of human cortisol-producing cytochrome P450 11B1 bound to the breast cancer drug fadrozole provides insights for drug design [Molecular Bases of Disease]

November 13th, 2018 by Simone Brixius-Anderko, Emily E. Scott

Human cytochrome P450 11B1 (CYP11B1) is responsible for the final step generating the steroid hormone cortisol, which controls stress and immune responses and glucose homeostasis. CYP11B1 is a promising drug target to manage Cushing’s disease, a disorder arising from excessive cortisol production. However, the design of selective inhibitors has been hampered because structural information for CYP11B1 is unavailable and the enzyme has high amino acid sequence identity (93%) to a closely related enzyme, the aldosterone-producing CYP11B2. Here we report the X-ray crystal structure of human CYP11B1 (at 2.1 Å resolution) in complex with fadrozole, a racemic compound normally used to treat breast cancer by inhibiting estrogen-producing CYP19A1. Comparison of fadrozole-bound CYP11B1 with fadrozole-bound CYP11B2 revealed that despite conservation of the active site residues, overall structures and active sites had structural rearrangements consistent with distinct protein functions and inhibition. While fadrozole binds to both CYP11B enzymes by coordinating the heme iron, CYP11B2 binds to the R enantiomer of fadrozole, whereas CYP11B1 binds to the S enantiomer, each with distinct orientations and interactions. These results provide insights into the cross-reactivity of drugs across multiple steroidogenic cytochrome P450 enzymes, provide a structural basis for understanding human steroidogenesis, and pave the way for the design of more selective inhibitors of both human CYP11B enzymes.
  • Posted in Journal of Biological Chemistry, Publications
  • Comments Off on Structure of human cortisol-producing cytochrome P450 11B1 bound to the breast cancer drug fadrozole provides insights for drug design [Molecular Bases of Disease]

Transglutaminase inhibition stimulates hematopoiesis and reduces aggressive behavior of crayfish, Pacifastacus leniusculus [Cell Biology]

November 13th, 2018 by Kingkamon Junkunlo, Kenneth Soderhall, Irene Soderhall

Transglutaminase (TGase) is a Ca2+-dependent cross-linking enzyme, which has both enzymatic and non-enzymatic properties. TGase is involved in several cellular activities, including adhesion, migration, survival, apoptosis, and extracellular matrix (ECM) organization. In this study, we focused on the role of the TGase enzyme in controlling hematopoiesis in the crayfish Pacifastacus leniusculus. We hypothesized that a high TGase activity could mediate an interaction of progenitor cells with the ECM to maintain cells in an undifferentiated stage in the hematopoietic tissue (HPT). We found here that the reversible inhibitor cystamine decreases the enzymatic activity of TGase from crayfish HPT as well as from guinea pig in a concentration-dependent manner. Cystamine injection could decrease TGase activity in HPT without affecting production of reactive oxygen species (ROS). Moreover the decrease in TGase activity in the HPT increased the number of circulating hemocytes. Interestingly the cystamine-mediated TGase inhibition reduced aggressive behavior and movement in crayfish. In conclusion, we show that cystamine-mediated TGase inhibition directly releases HPT progenitor cells from the HPT into the peripheral circulation in the hemolymph and strongly reduces aggressive behavior in crayfish.

Exploring the quinone/inhibitor-binding pocket in mitochondrial respiratory complex I by chemical biology approaches [Enzymology]

November 13th, 2018 by Shinpei Uno, Hironori Kimura, Masatoshi Murai, Hideto Miyoshi

NADH-quinone oxidoreductase (respiratory complex I) couples NADH-to-quinone electron transfer to the translocation of protons across the membrane. Even though the architectures of the quinone-access channel in the enzyme have been modeled by X-ray crystallography and cryo-EM, conflicting findings raise the question whether the models fully reflect physiologically relevant states present throughout the catalytic cycle. To gain further insights into the structural features of the binding pocket for quinone/inhibitor, we performed chemical biology experiments using bovine heart sub-mitochondrial particles. We synthesized ubiquinones that are oversized (SF-UQs) or lipid-like (PC-UQs) and are highly unlikely to enter and transit the predicted narrow channel. We found that SF-UQs and PC-UQs can be catalytically reduced by complex I, albeit only at moderate or low rates. Moreover, quinone-site inhibitors completely blocked the catalytic reduction and the membrane potential formation coupled to this reduction. Photoaffinity-labeling experiments revealed that amiloride-type inhibitors bind to the interfacial domain of multiple core subunits (49 kDa, ND1, and PSST) and 39 kDa supernumerary subunit, although the latter does not make up the channel cavity in the current models. The binding of amilorides to the multiple target subunits was remarkably suppressed by other quinone-site inhibitors and SF-UQs. Taken together, the present results are difficult to reconcile with the current channel models. On the basis of comprehensive interpretations of the present results and of previous findings, we discuss the physiological relevance of these models.

Small heat shock proteins: Simplicity meets complexity [Cell Biology]

October 31st, 2018 by Martin Haslbeck, Sevil Weinkauf, Johannes Buchner

Small heat shock proteins (sHsps) are a ubiquitous and ancient family of ATP-independent molecular chaperones. A key characteristic of sHsps is that they exist in ensembles of iso-energetic oligomeric species differing in size. This property arises from a unique mode of assembly involving several parts of the subunits in a flexible manner. Current evidence suggests that smaller oligomers are more active chaperones. Thus, a shift in the equilibrium of the sHsp ensemble allows regulating the chaperone activity. Different mechanisms have been identified that reversibly change the oligomer equilibrium. The promiscuous interaction with non-native proteins generates complexes that can form aggregate-like structures from which native proteins are restored by ATP-dependent chaperones such as Hsp70 family members. In recent years, this basic paradigm has been expanded and new roles, new cofactors as well as variations in structure and regulation of sHsps have emerged.

Mechanistic basis for the evolution of chalcone synthase catalytic cysteine reactivity in land plants [Plant Biology]

October 5th, 2018 by Geoffrey Liou, Ying-Chih Chiang, Yi Wang, Jing-Ke Weng

Flavonoids are important polyphenolic natural products, ubiquitous in land plants, that play diverse functions in plants’ survival in their ecological niches, including UV protection, pigmentation for attracting pollinators, symbiotic nitrogen fixation, and defense against herbivores. Chalcone synthase (CHS) catalyzes the first committed step in plant flavonoid biosynthesis and is highly conserved in all land plants. In several previously reported crystal structures of CHSs from flowering plants, the catalytic cysteine is oxidized to sulfinic acid, indicating enhanced nucleophilicity in this residue associated with its increased susceptibility to oxidation. In this study, we report a set of new crystal structures of CHSs representing all five major lineages of land plants (bryophytes, lycophytes, monilophytes, gymnosperms, and angiosperms), spanning 500 million years of evolution. We reveal that the structures of CHS from a lycophyte and a moss species preserve the catalytic cysteine in a reduced state, in contrast to the cysteine sulfinic acid seen in all euphyllophyte CHS structures. In vivo complementation, in vitro biochemical and mutagenesis analyses, and molecular dynamics simulations identified a set of residues that differ between basal-plant and euphyllophyte CHSs and modulate catalytic cysteine reactivity. We propose that the CHS active-site environment has evolved in euphyllophytes to further enhance the nucleophilicity of the catalytic cysteine since the divergence of euphyllophytes from other vascular plant lineages 400 million years ago. These changes in CHS could have contributed to the diversification of flavonoid biosynthesis in euphyllophytes, which in turn contributed to their dominance in terrestrial ecosystems.

RNF144A Sustains EGFR Signaling to Promote EGF-Dependent Cell Proliferation [Protein Synthesis and Degradation]

August 31st, 2018 by Shiuh-Rong Ho, Weei-Chin Lin

RNF144A is a single-pass transmembrane RBR E3 ligase that interacts with and degrades cytoplasmic DNA-PKcs, which is an EGFR-interacting partner. Interestingly, RNF144A expression is positively correlated with EGFR mRNA and protein levels in several types of cancer. However, the relationship between RNF144A and EGFR is poorly understood. This study reports an unexpected role for RNF144A in the regulation of EGF/EGFR signaling and EGF-dependent cell proliferation. EGFR ligands, but not DNA-damaging agents, induce a DNA-PKcs-independent interaction between RNF144A and EGFR. RNF144A promotes EGFR ubiquitination, maintains EGFR protein and prolongs EGF/EGFR signaling during EGF stimulation. Moreover, depletion of RNF144A by multiple independent approaches results in a decrease in EGFR expression and EGF/EGFR signaling. RNF144A knockout cells also fail to mount an immediate response to EGF for activation of G1/S progression genes. Consequently, depletion of RNF144A reduces EGF-dependent cell proliferation. These defects may be at least in part due to a role for RNF144A in regulating EGFR transport in the intracellular vesicles during EGF treatment.

Identification of a Kdn biosynthesis pathway in the haptophyte Prymnesium parvum suggests widespread sialic acid biosynthesis among microalgae [Enzymology]

August 31st, 2018 by Ben A Wagstaff, Martin Rejzek, Robert A. Field

Sialic acids are a family of more than 50 structurally distinct acidic sugars on the surface of all vertebrate cells where they terminate glycan chains and are exposed to many interactions with the surrounding environment. In particular, sialic acids play important roles in cell-cell and host-pathogen interactions. The sialic acids or related nonulosonic acids have been observed in Deuterostome lineages, Eubacteria, and Archaea, but are notably absent from plants. However, the structurally related C8 acidic sugar, 3-deoxy-D-manno-2-octulosonic acid (Kdo), is present in Gram-negative bacteria and plants as a component of bacterial lipopolysaccharide and pectic rhamnogalacturonan-II in the plant cell wall. Until recently, sialic acids were not thought to occur in algae, but as in plants, Kdo has been observed in algae. Here, we report the de novo biosynthesis of the deaminated sialic acid, 3-deoxy-D-glycero-D-galacto-2-nonulosonic acid (Kdn), in the toxin-producing microalga Prymnesium parvum. Using biochemical methods, we show that this alga contains CMP–Kdn and identified and recombinantly expressed the P. parvum genes encoding Kdn-9-P synthetase and CMP-Kdn synthetase enzymes that convert mannose-6-P to CMP–Kdn. Bioinformatics analysis revealed sequences related to those of the two P. parvum enzymes, suggesting that sialic acid biosynthesis is likely more widespread among microalgae than previously thought and that this acidic sugar may play a role in host-pathogen interactions involving microalgae. Our findings provide evidence that P. parvum has the biosynthetic machinery for de novo production of the deaminated sialic acid Kdn and that sialic acid biosynthesis may be common among microalgae.
  • Posted in Journal of Biological Chemistry, Publications
  • Comments Off on Identification of a Kdn biosynthesis pathway in the haptophyte Prymnesium parvum suggests widespread sialic acid biosynthesis among microalgae [Enzymology]

p25 of the dynactin complex plays a dual role in cargo binding and dynactin regulation [Cell Biology]

August 24th, 2018 by Rongde Qiu, Jun Zhang, Xin Xiang

Cytoplasmic dynein binds its cargoes via the dynactin complex and cargo adapters, and the dynactin pointed-end protein p25 is required for dynein-dynactin binding to the early endosomal dynein adapter HookA (Hook in the fungus Aspergillus nidulans). However, it is unclear whether the HookA-dynein-dynactin interaction requires p27, another pointed-end protein forming heterodimers with p25 within vertebrate dynactin. Here, live-cell imaging and biochemical pull-down experiments revealed that although p27 is a component of the dynactin complex in A. nidulans, it is dispensable for dynein-dynactin to interact with ΔC-HookA (cytosolic HookA lacking its early endosome-binding C terminus) and not critical for dynein-mediated early endosome transport. Using mutagenesis, imaging, and biochemical approaches, we found that several p25 regions are required for the ΔC-HookA-dynein-dynactin interaction, with the N terminus and Loop1 being the most critical regions. Interestingly, p25 was also important for the microtubule (MT) plus-end accumulation of dynactin. This p25 function in dynactin localization also involved p25’s N terminus and Loop1 critical for the ΔC-HookA-dynein-dynactin interaction. Given that dynactin’s MT plus-end localization does not require HookA and that the kinesin-1-dependent plus-end accumulation of dynactin is unnecessary for the ΔC-HookA-dynein-dynactin interaction, our results indicate that p25 plays a dual role in cargo binding and dynactin regulation. As cargo adapters are implicated in dynein activation via binding to dynactin’s pointed end to switch the conformation of p150, a major dynactin component, our results suggest p25 as a critical pointed-end protein involved in this process.

Are N- and C-terminally Truncated A{beta} species key pathological triggers in Alzheimer’s disease? [Neurobiology]

August 24th, 2018 by Julie Dunys, Audrey Valverde, Frederic Checler

The histopathology of Alzheimer’s disease (AD) is characterized by neuronal loss, neurofibrillary tangles, and senile plaque formation. The latter results from an exacerbated production (familial AD cases) or altered degradation (sporadic cases) of 40/42 amino-acid-long β-amyloid peptides (Aβ peptides) that are produced by sequential cleavages of Aβ precursor protein (βAPP) by β- and γ-secretases. The amyloid cascade hypothesis proposes a key role for the full-length Aβ42 and the Aβ40/42 ratio in AD etiology, in which soluble Aβ oligomers lead to neurotoxicity, tau hyperphosphorylation, aggregation, and, ultimately, cognitive defects. However, following this postulate, during the last decade, several clinical approaches aimed at decreasing full-length Aβ42 production or neutralizing it by immunotherapy have failed to reduce or even stabilize AD-related decline. Thus, the Aβ peptide (Aβ40/42)-centric hypothesis is probably a simplified view of a much more complex situation involving a multiplicity of APP fragments and Aβ catabolites. Indeed, biochemical analyses of AD brain deposits and fluids have unraveled an Aβ peptidome consisting of additional Aβ-related species. Such Aβ catabolites could be due to either primary enzymatic cleavages of βAPP or secondary processing of Aβ itself by exopeptidases. Here, we review the diversity of N- and C-terminally truncated Aβ peptides and their biosynthesis and outline their potential function/toxicity. We also highlight their potential as new pharmaceutical targets and biomarkers.

Thioridazine inhibits self-renewal in breast cancer cells via DRD2-dependent STAT3 inhibition, but induces a G1 arrest independent of DRD2 [Signal Transduction]

August 21st, 2018 by Matthew Tegowski, Cheng Fan, Albert S. Baldwin

Thioridazine is an antipsychotic that has been shown to induce cell death and inhibit self-renewal in a broad spectrum of cancer cells. The mechanisms by which these effects are mediated are currently unknown but are presumed to result from the inhibition of dopamine receptor 2 (DRD2). Here we show that the self-renewal of several, but not all, triple-negative breast cancer cell lines is inhibited by thioridazine. The inhibition of self-renewal by thioridazine in these cells is mediated by DRD2 inhibition. Further, we demonstrate that DRD2 promotes self-renewal in these cells via a STAT3 and IL-6-dependent mechanism. We also show that thioridazine induces a G1 arrest and a loss in cell viability in all tested cell lines. However, the reduction in proliferation and cell viability is independent of DRD2 and STAT3. Our results indicate that while there are cell types in which DRD2 inhibition results in inhibition of STAT3 and self-renewal, the dramatic block in cancer cell proliferation across many cell lines caused by thioridazine treatment is independent of DRD2 inhibition.
  • Posted in Journal of Biological Chemistry, Publications
  • Comments Off on Thioridazine inhibits self-renewal in breast cancer cells via DRD2-dependent STAT3 inhibition, but induces a G1 arrest independent of DRD2 [Signal Transduction]