G-Protein-coupled receptors: Decoding mixed signals

February 15th, 2017 by Thomas J Gardella

Nature Chemical Biology 13, 247 (2017). doi:10.1038/nchembio.2316

Author: Thomas J Gardella

A new mechanism of functional crosstalk between two distinct G-protein-coupled receptors (GPCRs)—the parathyroid hormone receptor (PTHR) and β2-adrenergic receptor (β2 Ar)—that occurs at the level of G protein βγ subunits and a specific adenylyl cyclase isoform is identified. This crosstalk augments cAMP signaling by the PTHR from endosomes, and thus promotes the actions of PTH ligands in bone target cells.

Metabolism: A-way with biofilms

February 15th, 2017 by Mirella Bucci

Nature Chemical Biology 13, 243 (2017). doi:10.1038/nchembio.2325

Author: Mirella Bucci

Plant infection: A decoy tactic

February 15th, 2017 by Grant Miura

Nature Chemical Biology 13, 243 (2017). doi:10.1038/nchembio.2322

Author: Grant Miura

Enzyme mechanisms: Fickle about fluorine

February 15th, 2017 by Caitlin Deane

Nature Chemical Biology 13, 243 (2017). doi:10.1038/nchembio.2324

Author: Caitlin Deane

Synthetic biology: Synthetic gene networks that smell

February 15th, 2017 by Fahim Farzadfard

Nature Chemical Biology 13, 245 (2017). doi:10.1038/nchembio.2315

Authors: Fahim Farzadfard & Timothy K Lu

Bioengineers have endowed a consortium of human cells with an artificial sense of smell, enabling the cells to detect, quantify, and remember the presence of gaseous volatile compounds in their environment.

mRNA localization: If you have to ASH

February 15th, 2017 by Joshua M. Finkelstein

Nature Chemical Biology 13, 243 (2017). doi:10.1038/nchembio.2323

Author: Joshua M. Finkelstein

Accelerating the semisynthesis of alkaloid-based drugs through metabolic engineering

February 15th, 2017 by Amy M Ehrenworth

Nature Chemical Biology 13, 249 (2017). doi:10.1038/nchembio.2308

Authors: Amy M Ehrenworth & Pamela Peralta-Yahya

  • Posted in Nat Chem Biol, Publications
  • Comments Off on Accelerating the semisynthesis of alkaloid-based drugs through metabolic engineering

CipA and CipB as Scaffolds To Organize Proteins into Crystalline Inclusions

February 10th, 2017 by Yang Wang, Ralf Heermann and Kirsten Jung

TOC Graphic

ACS Synthetic Biology
DOI: 10.1021/acssynbio.6b00323

Call for Papers: 254th ACS Meeting August 20-24, 2017 in Washington DC

February 2nd, 2017 by pthomas2

Abstract deadline Monday March 20, 2017. In addition to poster sessions, there will be oral sessions for contributed papers from Graduate students and postdocs, Early Career Investigators and Mid-Career Investigators. Speakers for these symposia will be selected from the submitted abstracts. If your abstract is not chosen for an oral presentation, it will be moved to a poster session. Click here to submit abstract.

  • Posted in DBC News
  • Comments Off on Call for Papers: 254th ACS Meeting August 20-24, 2017 in Washington DC

Structural Basis for the Lesion-scanning Mechanism of the Bacterial MutY DNA Glycosylase [Enzymology]

January 27th, 2017 by Lan Wang, Srinivas Chakravarthy, Gregory L Verdine

The highly mutagenic A:oxoG (8-oxoguanine) base-pair is generated mainly by misreplication of the C:oxoG base-pair, the oxidation product of the C:G base-pair. A:oxoG base-pair is particularly insidious because neither base in it carries faithful information to direct the repair of the other. The bacterial MutY (MUTYH in humans) adenine DNA glycosylase is able to initiate the repair of A:oxoG by selectively cleaving the A base from the A:oxoG base-pair. The difference between faithful repair and wreaking mutagenic havoc on the genome lies in the accurate discrimination between two structurally similar base-pairs: A:oxoG and A:T. Here we present two crystal structures of the MutY N-terminal domain in complex with either undamaged DNA or DNA containing an intrahelical lesion. These structures have captured for the first time, a DNA glycosylase scanning the genome for a damaged base in the very first stage of lesion-recognition and the base-extrusion pathway. The mode of interaction observed here has suggested a common lesion-scanning mechanism across the entire helix-hairpin-helix superfamily to which MutY belongs. In addition, small-angle X-ray scattering (SAXS) studies together with accompanying biochemical assays have suggested a possible role played by the C-terminal oxoG-recognition domain of MutY in lesion-scanning.