Activation of exogenous fatty acids to acyl-acyl carrier protein cannot bypass FabI inhibition in Neisseria [Microbiology]

November 13th, 2015 by Yao, J., Bruhn, D. F., Frank, M. W., Lee, R. E., Rock, C. O.

Neisseria is a Gram-negative pathogen with phospholipids composed of straight chain saturated and monounsaturated fatty acids, the ability to incorporate exogenous fatty acids, and lipopolysaccharides that are not essential. The FabI inhibitor, AFN-1252, was deployed as a chemical biology tool to determine if Neisseria can bypass the inhibition of fatty acid synthesis by incorporating exogenous fatty acids. Neisseria encodes a functional FabI that was potently inhibited by AFN-1252. AFN-1252 caused a dose dependent inhibition of fatty acid synthesis in growing Neisseria, a delayed inhibition of growth phenotype and minimal inhibition of DNA, RNA, and protein synthesis showing that its mode of action is through inhibiting fatty acid synthesis. Isotopic fatty acid labeling experiments showed that Neisseria encodes the ability to incorporate exogenous fatty acids into its phospholipids by an acyl-acyl carrier protein dependent pathway. However, AFN-1252 remained an effective antibacterial when Neisseria are supplemented with exogenous fatty acids. These results demonstrate that extracellular fatty acids are activated by an acyl-acyl carrier protein synthetase (AasN) and validate type II fatty acid synthesis (FabI) as a therapeutic target against Neisseria.