N6-methyladenosine seqencing highlights the involvement of mRNA methylation in oocyte meiotic maturation and embryo development by regulating translation in Xenopus laevis [Developmental Biology]

September 9th, 2016 by Qi, S.-T., Ma, J.-Y., Wang, Z.-B., Guo, L., Hou, Y., Sun, Q.-Y.

During the oogenesis of Xenopus laevis, oocytes accumulate maternal materials for early embryo development. As the transcription activity of oocyte is silenced at the fully-grown stage and the global genome is reactivated only by the mid-blastula embryo stage, the translation of maternal mRNAs accumulated during oocyte growth should be accurately regulated. Previous evidence has illustrated that the poly(A) tail length and RNA binding elements mediate RNA translation regulation in oocyte. Recently, RNA methylation is found to exist in various systems. In the present study, we sequenced the N6-methyladenosine (m6A) modified mRNAs in fully-grown germinal vesicle (GV) stage and metaphase II (MII) stage oocytes. As a result, we identified 4207 mRNAs with m6A peaks in the GV stage or MII stage oocytes. When we integrated the mRNA methylation data with transcriptome and proteome data, we found that the highly methylated mRNAs showed significantly lower protein levels than those of the hypomethylated mRNAs, although the RNA levels showed no significant difference. We also found that the hypomethylated mRNAs were mainly enriched in the cell cycle and translation pathways, whereas the highly methylated mRNAs were mainly associated with the protein phosphorylation. Our results suggest that the oocyte mRNA methylation can regulate the cellular translation and cell division during oocyte meiotic maturation and early embryo development.
  • Posted in Journal of Biological Chemistry, Publications
  • Comments Off on N6-methyladenosine seqencing highlights the involvement of mRNA methylation in oocyte meiotic maturation and embryo development by regulating translation in Xenopus laevis [Developmental Biology]