Plasminogen kringle 5 induces endothelial cell apoptosis by triggering a voltage-dependent anion channel 1 (VDAC1) positive feedback loop [Cell Biology]

October 8th, 2014 by Li, L., Yao, Y.-C., Gu, X.-Q., Che, D., Ma, C.-Q., Dai, Z.-Y., Li, C., Zhou, T., Cai, W.-B., Yang, Z.-H., Yang, X., Gao, G.-Q.

Human plasminogen kringle 5 (K5) is known to display its potent anti-angiogenesis effect through inducing endothelial cell (EC) apoptosis, and the voltage-dependent anion channel 1 (VDAC1) has been identified as a receptor of K5. However, the exact role and underlying mechanisms of VDAC1 in K5-induced EC apoptosis remain elusive. In the current study, we showed that K5 increased the protein level of VDAC1, which initiated the mitochondrial apoptosis pathway of ECs. Our findings also showed that K5 inhibited the ubiquitin-dependent degradation of VDAC1 by promoting the phosphorylation of VDAC1, possibly at Ser12 and Thr107. The phosphorylated VDAC1 was attenuated by AKT agonist, GSK3β inhibitor and siRNA,suggesting that K5 increased VDAC1 phosphorylation via the AKT-GSK3β pathway. Furthermore, K5 promoted cell surface translocation of VDAC1, and binding between K5 and VDAC1 was observed on the plasma membrane. HKI protein blocked the impact of K5 on the AKT-GSK3β pathway by competitively inhibiting the interaction of K5 and cell surface VDAC1. Moreover, K5-induced EC apoptosis was suppressed by VDAC1 antibody. These data show for the first time that K5-induced EC apoptosis is mediated by the positive feedback loop of "VDAC1-AKT-GSK3β-VDAC1", which may provide new perspectives on the mechanisms of K5-induced apoptosis.
  • Posted in Journal of Biological Chemistry, Publications
  • Comments Off on Plasminogen kringle 5 induces endothelial cell apoptosis by triggering a voltage-dependent anion channel 1 (VDAC1) positive feedback loop [Cell Biology]