Genome-wide Screening of Regulators of Catalase Expression: Role of a Transcription Complex and Histone and tRNA Modification Complexes on Adaptation to Stress [Signal Transduction]

November 13th, 2015 by Garcia, P., Encinar del Dedo, J., Ayte, J., Hidalgo, E.

In response to environmental cues, the MAP kinase Sty1-driven signaling cascade activates hundreds of genes to induce a robust anti-stress cellular response in fission yeast. Thus, upon stress imposition Sty1 transiently accumulates in the nucleus where it up-regulates transcription through the Atf1 transcription factor. Several regulators of transcription and translation have been identified as important to mount an integral response to oxidative stress, such as the SAGA or Elongator complexes, respectively. With the aim of identifying new regulators of this massive gene expression program, we have used a GFP-based protein reporter and screened a fission yeast deletion collection using flow cytometry. We find that the levels of catalase fused to GFP, both before and after a threat of peroxides, are altered in hundreds of strains lacking components of chromatin modifiers, transcription complexes and modulators of translation. Thus, the transcription elongation complex Paf1, the histone methylase Set1-COMPASS and the translation-related Trm112 dimers are all involved in full expression of Ctt1-GFP and in wild-type tolerance to peroxides.
  • Posted in Journal of Biological Chemistry, Publications
  • Comments Off on Genome-wide Screening of Regulators of Catalase Expression: Role of a Transcription Complex and Histone and tRNA Modification Complexes on Adaptation to Stress [Signal Transduction]