The Saccharomyces cerevisiae Hrq1 and Pif1 DNA helicases synergistically modulate telomerase activity in vitro [Enzymology]

August 1st, 2018 by David G. Nickens, Cody M. Rogers, Matthew L. Bochman

Telomere length homeostasis is vital to maintaining genomic stability and is regulated by multiple factors, including telomerase activity and DNA helicases. The Saccharomyces cerevisiae Pif1 helicase was the first discovered catalytic inhibitor of telomerase, but recent experimental evidence suggests that Hrq1, the yeast homolog of the disease-linked human RecQ-like helicase 4 (RECQL4), plays a similar role via an undefined mechanism. Using yeast extracts enriched for telomerase activity and an in vitro primer extension assay, here we determined the effects of recombinant wild-type and inactive Hrq1 and Pif1 on total telomerase activity and telomerase processivity. We found that titrations of these helicases alone have equal-but-opposite biphasic effects on telomerase, with Hrq1 stimulating activity at high concentrations. When the helicases were combined in reactions, however, they synergistically inhibited or stimulated telomerase activity depending on which helicase was catalytically active. These results suggest that Hrq1 and Pif1 interact and that their concerted activities ensure proper telomere length homeostasis in vivo. We propose a model in which Hrq1 and Pif1 cooperatively contribute to telomere length homeostasis in yeast.