The Three Mycobacterium Tuberculosis Antigen 85 Isoforms have Unique Substrates and Activities Determined by Non-active Site Regions.* [Microbiology]

July 14th, 2014 by Backus, K. M., Dolan, M. A., Barry, C. S., Joe, M., McPhie, P., Boshoff, H. I. M., Lowary, T. L., Davis, B. G., Barry, C. E.

The three isoforms of Antigen 85 (A, B and C) are the most abundant secreted mycobacterial proteins and catalyze transesterification reactions that synthesize mycolated arabinogalactan, trehalose mono-mycolate (TMM) and trehalose dimycolate (TDM), important constituents of the outermost layer of the cellular envelope of Mycobacterium tuberculosis. These three enzymes are nearly identical at the active site and have therefore been postulated to exist to evade host immunity. Distal to the active site is a second putative carbohydrate-binding site of lower homology. Mutagenesis of the three isoforms at this second site affected both substrate selectivity and overall catalytic activity in vitro. Using synthetic and natural substrates we show that these three enzymes exhibit unique selectivity: Antigen 85A more efficiently mycolates TMM to form TDM, whereas C (and to a lesser extent B) has a higher rate of activity using free trehalose to form TMM. This difference in substrate selectivity extends to the hexasaccharide fragment of cell wall arabinan. Mutation of secondary site residues from the most active isoform (C) into those present in A or B partially interconverts this substrate selectivity. These experiments in combination with molecular dynamics simulations reveal that differences in the N-terminal helix α9, the adjacent P216-F228 loop and helix α5 are the likely cause of changes in activity and substrate selectivity. These differences explain the existence of three isoforms and will allow for future work in developing inhibitors.
  • Posted in Journal of Biological Chemistry, Publications
  • Comments Off on The Three Mycobacterium Tuberculosis Antigen 85 Isoforms have Unique Substrates and Activities Determined by Non-active Site Regions.* [Microbiology]